TY - JOUR
A2 - Fei, Minrui
AU - Alonso-Quesada, S.
AU - De la Sen, M.
AU - Ibeas, A.
PY - 2015
DA - 2015/05/06
TI - A Data Dropout Compensation Algorithm Based on the Iterative Learning Control Methodology for Discrete-Time Systems
SP - 429892
VL - 2015
AB - This paper deals with the convergence of a remote iterative learning control system subject to data dropouts. The system is composed by a set of discrete-time multiple input-multiple output linear models, each one with its corresponding actuator device and its sensor. Each actuator applies the input signals vector to its corresponding model at the sampling instants and the sensor measures the output signals vector. The iterative learning law is processed in a controller located far away of the models so the control signals vector has to be transmitted from the controller to the actuators through transmission channels. Such a law uses the measurements of each model to generate the input vector to be applied to its subsequent model so the measurements of the models have to be transmitted from the sensors to the controller. All transmissions are subject to failures which are described as a binary sequence taking value 1 or 0. A compensation dropout technique is used to replace the lost data in the transmission processes. The convergence to zero of the errors between the output signals vector and a reference one is achieved as the number of models tends to infinity.
SN - 1024-123X
UR - https://doi.org/10.1155/2015/429892
DO - 10.1155/2015/429892
JF - Mathematical Problems in Engineering
PB - Hindawi Publishing Corporation
KW -
ER -